# CUPID-1T: A FUTURE NORMAL HIERARCHY BOLOMETRIC EXPERIMENT

#### **CUPID-1T: HALLMARKS**

- 1000 kg of <sup>100</sup>Mo in a new cryostat and/or multiple facilities worldwide
- Sensitivity:  $T_{1/2} > 8 \times 10^{27}$  years (3 $\sigma$ ),  $m_{\beta\beta} > 4-7$  meV (NH)

#### REQUIREMENTS

- Reduction in the background compared to CUPID (x20)
- Readout for O(10k) crystal array

#### POTENTIAL EXPANSIONS

- Large volume cryogenic facilities in multiple UG labs worldwide
- Possible detector parameters:
  - Main detectors:
    - ~1900 kg of Li<sub>2</sub>MoO<sub>4</sub>, few keV thresholds possible
  - Light detectors:
    - ~6200 units, 68 kg of Ge (or 29 kg of Si)
    - O(10 eV) threshold, active  $\gamma$  and surface veto
  - Could also deploy **specialized towers**, e.g. SuperCDMS style DM detectors

TARGET TIMELINE: ANTICIPATED CONSTRUCTION LATE 2020'S, COMMISSIONING EARLY 2030'S



### PHYSICS BEYOND OVBB

## LONGER-TERM R&D ON ADVANCED DETECTOR TECHNOLOGIES:

- Superconducting coating of crystals to enhance PSD capabilities (CROSS @ Canfranc)
- Active γ veto (synergy with low-mass DM experiments)
- High-speed superconducting sensors (TES, MKID)
- Multiplexed readout (synergy with CMB)
- Cryogenic CMOS ASIC developments (synergy with QIS)
- Technological overlap with dark matter, CMB experiments and quantum sensor/QIS community

#### POSSIBLE PHYSICS TOPICS

- Low-mass DM
- Neutrino magnetic moment (with external sources or beams)
- Solar axion searches
- Lorentz/CPT violations
- Tracked particle searches







**TES-based LD** 



**CMOS @ 100 mK** 



SEE ALSO: CUPID pre-CDR: arxiv:1907.09376